
Addressing Variability in a GNC FSW Product Line 1

Addressing Variability in a Guidance, Navigation, and
Control Flight Software Product Line

David McComas1, Stephen Leake1, Michael Stark2,
 Maurizio Morisio2, Guilherme Travassos2, and Michael White3,

1 NASA Goddard Space Flight Center,
Greenbelt, Maryland USA

{David.C.McComas.1,
Stephen.A.Leake.1}@gsfc.nasa.gov,

2 Software Engineering Lab,
Michael.E.Stark.1@gsfc.nasa.gov

morisio@polito.it
ght@cos.ufrj.br

3 Johns Hopkins University Applied Physics Lab,
Laurel, Maryland USA

Michael.J.White@jhuapl.edu

Abstract. The NASA Goddard Space Flight Center is developing a guid-
ance, navigation, and control flight software product line that includes
both processes and their accompanying products. The processes in-
clude a domain and application engineering process that have been in-
fluenced by Synthesis[1] and FAST[2]. The products include graphical
and textual analysis/design documents and the flight software reposi-
tory. We are using UML (Unified Modeling Language) stereotypes to
represent variability in our domain analysis models. This paper focuses
on how variability is addressed during each phase of the domain and
application engineering processes. The techniques are illustrated using
the Celestial Body subdomain. The GNC FSW product line is a work in
progress so many concepts presented in this paper have not fully ma-
tured.

1 Introduction

The NASA Goddard Space Flight Center Flight Software Branch (FSB) is developing a
Guidance, Navigation, and Control (GNC) Flight Software (FSW) product line. The
demand for increasingly more complex flight software in less time while maintaining the
same level of quality has motivated us to look for better FSW development strategies.
The GNC FSW product line will address the core GNC FSW functionality that has
been very similar on many recent low/near Earth missions in the last 10 years. Unfor-

Addressing Variability in a GNC FSW Product Line 2

tunately these missions have not realized significant drops in development cost since
a systematic approach towards reuse has not been adopted. In addition, new demands
are continually being placed upon the FSW which mean the FSB must become more
adept at providing the core GNC FSW functionality so it can accommodate the addi-
tional requirements. The GNC FSW product is being developed to address these is-
sues.

For our purposes, domain engineering includes the engineering activities needed to
produce reusable artifacts for a domain. Application engineering refers to developing
an application in the domain starting from reusable artifacts. Domain engineering is the
foundation for emerging product line software development approaches [3]. A product
line is “A family of products designed to take advantage of their common aspects and
predicted variabilities” [2].

The focus of this paper is on how the GNC FSW product line manages variability.
Existing domain engineering approaches do not enforce any specific notation for do-
main analysis or commonality and variability analysis. Usually, natural language text is
the preferred tool. The advantage is the flexibility and adaptability of natural language.
However, one has to be ready to accept its well-known drawbacks, such as ambiguity,
inconsistency, and contradictions.

While most domain analysis approaches are functionally oriented, the idea of ap-
plying the object-oriented approach in domain analysis is not new [3]. Several authors
[4, 5] propose to use UML [7] as the notation underlying domain analysis. Keepence
and Mannion [6] propose to use the design pattern notation and style to represent
discriminants, or features that distinguish one application from another. Our work is
based on the same idea of merging UML and domain analysis. Further, we propose a
few extensions to UML in order to express variability, and we define precisely their
semantics so that a tool can support them.

The paper is organized as follows. Section 2 outlines the product line processes and
identifies where variability must be addressed. Section 3 describes the product line
products with respect to how they accommodate variability. The Celestial Body sub-
domain is used as a working example. Section 4 summarizes our results to date and
describes what we plan to do in the future.

2 Process Overview

We initially tried to adhere to the Synthesis [1] process, but our reference material
lacked the depth we needed to actually implement a product line. In addition Synthesis
introduces a new set of terminology that may hinder the acceptance of the product line
when we introduced it to the rest of the FSB. Since we know how to develop individ-
ual applications, we extended the process to apply to developing applications within
the context of a product line using reusable assets. We defined our own product line
domain and application processes (see Figure 1) by decomposing the processes into
the familiar analysis, design, implementation, and verification lifecycle phases.

Addressing Variability in a GNC FSW Product Line 3

Domain
Management

Domain
Plan

Domain
Analysis

Domain
Design

Domain
Implementation

Domain
Verification

Application
Support

Domain Analysis
Structured Requirements Model
Requirements Decision Model

Domain Design
Design Model
Design Decision Model

Domain Modules
Level 1
Level 2
Level 2 Decision Model

TBD Application
Process

Description

Application
Design

Application
Implementation

Application
Verification

Application
Support

Application
Design

Application
Modules

TBD

Application
Users Guide

Project
Management

Project
Plan

Domain
Engineering

Application
Engineering

Process FlowActivity

Product Data Flow

Project
Requirements

Application
Analysis

Application
Requirements

Figure 1 - GNC FSW Product Line Processes

Initially we identified what products are associated with each process, but we did-
n't know how information would be represented in the products. To solve this prob-
lem we adopted a strategy to develop a series of increasingly more complex prototype
applications. Application complexity is a function of the difficulty of the domain
problem being solved and the runtime environment. For example, our first application
is considered simple because it does not interface to external hardware and we are
developing it independent of the embedded flight software context (i.e we can verify
the application on a PC without a simulator). As we work through each application
within the context of a product line we will discover the information that would need to
be represented in order to be useful. Based on experience we had identified several
subdomains within the GNC FSW domain to serve as our reference architecture. Our
intention is to include each subdomain in at least one prototype application.

Domain engineering and application engineering govern the GNC FSW product line.
Domain engineering produces engineering products that describe a domain while
application engineering produces an application starting from and reusing domain
engineering products. Domain engineering is composed of four activities. Domain
analysis defines the scope of the domain, describes the domain and performs com-
monality and variability analysis on it. Its main deliverable is a document in UML and
text. Domain design focuses on design decisions for the domain and delivers a docu-
ment in UML and text. Domain implementation develops source code modules. Finally
domain verification provides unit test for verifying individual modules and a testing
framework to be used by the application verification process. Each domain engineering
product must represent commonality and variability in a manner that is usable by ap-

Addressing Variability in a GNC FSW Product Line 4

plication engineering. This can only be achieved by bounding the domain problem
space so the variability is predictable.

Application engineering is composed of the same four phases, analysis, design, im-
plementation, and verification. These phases have the usual meaning as for current
projects; however they do not develop the corresponding deliverables from scratch,
but simply modify and adapt the corresponding domain engineering deliverable. Heu-
ristics guide this process. They are collected and documented during domain engi-
neering. The application engineer uses them to make analysis, design and implementa-
tion decisions.

3 Products and Variability

This section describes how variability is captured and used in each of the domain and
application engineering processes. At the time of this writing we are in the process of
developing our second prototype application so many concepts have not been fully
matured.

These sections use the GNC FSW Celestial Body subdomain as an example to help
clarify concepts. A celestial body is any object in space within our solar system that
is within scope of the GNC FSW product line domain. This includes the Earth, the Sun,
the Moon, spacecraft, comets, and asteroids. Stars other than the Sun are not charac-
terized as celestial bodies because the required information about distant stars is
minimal.

3.1 Analysis

This section presents the graphical notation used in the domain analysis phase to
capture the domain variability and describes the application analysis process used to
resolve the variability. Figure 2 shows the Celestial Body subdomain analysis deliver-
able.

Addressing Variability in a GNC FSW Product Line 5

IGRF Magnetic Field

IGRF Coefficients

wrench()

magneticfield()

<<V>>

Dipole Magnetic Field

Dipole Coefficients

wrench()

magneticfield()

<<V>>

Constant Magnetic Field

Constant Coefficients

wrench()

magneticfield()

<<V>>

Harris-Priester Atmosphere

density()

<<V>>

Spherical Harmonic Gravity

wrench()

<<V>>
Point Mass Gravity

wrench()

Polynomial Model

parameters

Set_Parameters()

Validate_Parameters()

<<V>>

Constant Atmosphere Density

density()

<<V>>

Jacchia-Roberts Atmosphere Density

density()

<<V>>

Celestial Body Ephemeris

pose()

<<V>> rate()

Celestial Body Albedo

luminance()

<<V>>

Celestial Body Gravity

parameters

wrench()

<<V>>

Celestial Body Magnetic Field

magneticfield()

<<V>> wrench()

<<V>>

Celestial Body Atmosphere

parameters

density()

wrench()

<<V>>

Celestial Body

wrench()

pose()

11

0..10..1

0 . . *0 . . *

0..*0..*

0..*0..*

Integrat ion Model

Integrate()

set_initial_state()

<<V>>

pose means position

and orientation. wrench

is force and torque.

Some bodies wi l l only
need translation, some

wil l only need rotation.

We don't put in all these

<<v>>s, to keep things

cleaner.

wrench

Celestial Body Domain Analysis Class Diagram

Moon Ephemeris Low

Sun Ephemeris Low Sun Ephemeris High

Moon Ephemeris High

Figure 2 Celestial Body Domain Analysis Diagram

The notation is based on UML as applied to object oriented (OO) analysis. In tradi-
tional OO analysis it is assumed that:

• A single application’s requirements are analyzed to capture its concepts (classes),
properties (attributes), behaviors (operations) and static relationships.

• All elements in the OO analysis model (classes, attributes, operations, relation-
ships) are part of the application.

In domain analysis:

Addressing Variability in a GNC FSW Product Line 6

• A domain (i.e. a set of applications) is analyzed using knowledge from past sys-
tems and anticipated requirements of future systems.

• Only a subset of the analysis model is used for a particular application.

Elements in the domain analysis are part of the domain, but not always part of the
application. In other words commonality, variability and exclusion need to be repre-
sented. Our approach is to use a special symbol <<V>> to represent variability, and to
interpret elements that are not tagged by a <<V>> as a commonality. Exclusion is not
represented in the diagrams (however, elements excluded and rationales for exclusion
are detailed in the text that accompanies the UML).

Figure 2 shows that all Celestial Bodies contain a Celestial Body Ephemeris (an
ephemeris defines the position and optionally the velocity of a body at a specific time).
In other words, Celestial Body and Celestial Body Ephemeris are common to all appli-
cations. The class celestial body gravity Celestial Body Gravity is tagged by a <<V>>,
which means it could be present in some applications while not in others.

The same variability concept applies to operations, attributes, and arguments of op-
erations. Operation pose() in class Celestial Body Ephemeris is present in all applica-
tions, while in the same class rate() may or may not be present.

Generalization and aggregation relationships can change, indirectly, the availability
of a class in an application. Consider classes Point Mass Gravity and Spherical Har-
monic Gravity. Since they are a specialization of the variable class Celestial Body
Gravity they can only be part of an application if Celestial Body Gravity has been
selected. The same applies to aggregation, or part-of, relationships. If class A is part-
of class B, and B is variable, A is in the application only if B is in the application. Since
generalization and aggregation relationships define sets of classes (the set of speciali-
zation and the set of parts, respectively) our notation supports the concept of dis-
criminants (differentiating system features) [6]. A complete description of our UML
extensions can be found in [8].

Application Analysis

Application analysis begins with the selection of the models to include in the appli-
cation. The variability shown in Figure 2 must be resolved. Note that the designer of
a mission’s orbit is generally not a software engineer or UML expert, so the variability
needs to map to mission concepts in a manner that is comprehensible by the mission
analysts. We are currently investigating whether UML and text are the best way to
represent this information for the analysts.

To illustrate the application analysis process, we will consider two types of mis-
sions from the orbit mechanics perspective: one that orbits a Lagrange point, and one
that is in a low Earth orbit. We will not define these terms in detail, the significant
thing for the application engineer is the knowledge that Lagrange points are far
enough away from Earth that Earth’s atmosphere and magnetic field have no signifi-
cant effect on the orbit. Figures 3 and 4 show the class diagrams for the low Earth
orbit (LEO) and the Lagrange orbit, respectively.

Addressing Variability in a GNC FSW Product Line 7

Polynomial Model

Point Mass Gravity

Constant Atmosphere Density

Integration Model

CB Ephemeris
CB Gravity CB Atmosphere

CB Magnetic Field

Celestial Body

wrench

Constant Magnetic Field

Moon Ephemeris Low Sun Ephemeris High

Figure 3 - Low Earth Orbit Application Class Diagram

Polynomial Model

Point Mass GravityIntegration Model

CB Ephemeris
CB Gravity

Celestial Body

wrench

Moon Ephemeris Low Sun Ephemeris High

Figure 4 - Lagrange Orbit Application Class Diagram

Addressing Variability in a GNC FSW Product Line 8

The obvious difference between the two class diagrams is the inclusion of atmo s-
phere and magnetic field modeling for the low Earth orbit mission. These diagrams
also implicitly illustrate some rules for variability and generalization. If a superclass
has a class-level variability and is not included in the application, none of its sub-
classes may appear; for example excluding atmosphere modeling from the Lagrange
mission automatically excludes the three concrete subclasses that implement the mo d-
els. Including a superclass does not automatically include all subclasses, however. In
the low Earth orbit mission, both the atmosphere and magnetic field models include
only one subclass out of the 3 possibilities for each.

These rules are fairly simple, and are documented in [8]. They can become both
more complex and more domain dependent when one considers the relationships be-
tween objects of two given classes. For example, Figure 2 shows that the Celestial
Body class always contains exactly one Celestial Body Ephemeris, which is the model
that propagates an orbit. What it does not show is that to model the Sun as a Celes-
tial Body object, this object should not contain instances from either of the Moon
Ephemeris subclasses. This type of constraint could be enforced by some form of
domain rule base, or by application inspection checklists that include usage rules. It is
not yet clear which will be a more useful approach for the flight software problem.

Another issue that needs to be resolved is exactly what UML diagrams are useful
for product line analysis tasks, and what diagrams could be useful as generated prod-
ucts for the application. During Celestial Body domain analysis, we also generated an
object diagram showing Celestial Body objects for a spacecraft, the Sun, the Earth,
and the Moon, and a corresponding interaction diagram showing how the spacecraft
uses an Integration Model to propagate orbit, modeling the effects of the Sun, Earth
and Moon. These added diagrams do not show any variability, but may be useful in
helping an application engineer decide how to resolve variability in the domain analy-
sis model.

Similarly, we examined the use of object diagrams as part of application analysis.
The motivation was to clarify that there are distinct steps for choosing models by
resolving the variabilities, creating objects, and defining the relationships between the
objects. While this paper has focused on the issue of variabilities and how they are
resolved, our implementation prototyping has shown the need for defining objects,
their relationships, and default initial parameters for the application system. The re-
sults of these prototypes need to be fed back to the analysis and design stages of the
application engineering process.

 The result was that even an object diagram generated from the simpler Lagrange
application class diagram seemed cluttered, indicating potential problems when the
domain model is populated with more classes. It is still important to distinguish these
two steps in the application engineering process, but there may be better ways to
represent each one. At this point the prototype team has not established what dia-
grams or text documents (if any) are needed for application engineering. Creating
candidate diagrams during the prototyping process will help clarify this issue, as well
as understanding the requirements for tools supporting application engineers.

Addressing Variability in a GNC FSW Product Line 9

3.2 Design and Implementation

Design provides a solution to the problem defined by the analysis process. Our de-
sign must accommodate the variability expressed in the analysis model within the
context of the GNC FSW environment. The GNC FSW environment has several con-
straining features. The GNC FSW resides on a remote embedded system so there is no
direct user interface. User interaction is achieved via commands, telemetry, events, and
tables. Commands direct the GNC FSW to perform an action. Commands can originate
from the ground or from other onboard components. Telemetry is data that is exported
by the GNC FSW. Events are time-stamped notifications of a particular GNC FSW
state. Telemetry and events can be received by the ground and by other onboard
components. Tables are logical groups of parameters that can be loaded/dumped
to/from the spacecraft as a complete set. Additional GNC FSW constraints typically
include hard real-time performance requirements, customized hardware, out-of-date
processors, limited memory, and restrictions on the use of dynamic memory facilities.

The domain design must provide variability mechanisms for classes, for groups of
classes (components), and between components. As we work through our prototype
applications we are documenting our design decisions and rules. We expect to have a
consistent set of architectural elements, design patterns, and rules for using them in
order to implement a complete and consistent domain design.

As an example, consider how the Celestial Body class in Figure 2 is an aggregate of
several classes whose inclusion is variable. A technique for addressing this situation
is to define an Add() operation to the Celestial Body class for each <<v>> class it
contains. If an application requires the <<v>> class then the following steps must be
taken:

1. Create a static instance of each Celestial Body aggregate object. Note dynamic
memory allocation is typically not used for FSW.

2. During initialization, the component that contains a Celestial Body would add
the aggregates objects that are required for the specific application using the
Add() operation.

We are currently in the process of defining architectural elements that will support
commands, telemetry, events, and tables while providing the flexibility to allow the
components to be assembled in multiple configurations. Standardized interfaces,
parameterized components, and hierarchical component structures are some of the
techniques we are investigating.

Application design must utilize the domain design mechanisms to implement the
application analysis model. In the "add" example above, the addition of the Add()
operation and the application development steps are part of the domain design. Actu-
ally carrying out the steps is application design. In general application design must
identify the required components/objects (this is derived from the application analysis
model), define parameters, and resolve associations (object dependencies). Currently,
we have not felt the need to generate any additional design information other than the

Addressing Variability in a GNC FSW Product Line 10

code itself. This is due in part to good coding standards. It also alleviates the need to
maintain consistency between an application design document and the code

Domain implementation consists of coding the domain analysis models using do-
main design elements, patterns, and rules. Common domain classes are simply coded.
We are still exploring various techniques for handling implementation variability.
These techniques include using makefiles and preprocessor directives for conditional
code inclusion. At the class operation level an exception could be raised if an applica-
tion tries to use a function that has not been instantiated.

3.4 Verification

Our current prototypes have not been verified, so this section reflects our plans.
Domain verification ensures the correctness, consistency, and completeness of the
domain engineering work products [1]. The techniques employed will resemble our
current techniques for verifying a single application. These include inspection and
review of analysis, design, code and test products. Following code inspection, unit
testing is performed. A unit is defined as a single interface file, together with the body
files that implement the unit. In C/C++, the interface is a header file. In Ada an inter-
face is a package specification. Components are groups of tightly coupled units.
Component testing will also be performed. Both unit and component tests will be
configuration managed with the source code.

In our Celestial Body example, a unit test is developed for each class. For abstract
classes, test-specific concrete classes will be developed to fully exercise the abstract
interface. It is not feasible to test all permutations of the variability expressed in the
class diagrams. However, a representative test suite may be useful. For example, at the
component level, a low Earth orbit and a Lagrange orbit test could be defined. These
would test the two most common Celestial Body configurations. We must keep in
mind that random application specifications will not be generated. A domain expert
will be part of the application specification process and to a domain expert, the vari-
ability resolution for a subdomain such as Celestial Body is straightforward.

An important aspect of flight software verification is the execution of unit tests on
an application's target environment. This requires the unit tests written during domain
verification to be portable and repeatable. This is also another reason to configuration
manage the unit tests with the source code.

As part of our product line development strategy we will use the product line to im-
plement previous missions. This will verify the domain process and products within
the context of a previous problem. However, application verification and validation
will always be necessary, regardless of the level of domain verification. We are also
considering platform-independent closed-loop testing on a simulated flight system.
This would allow us to prototype applications, but again its verification potential is
limited.

Addressing Variability in a GNC FSW Product Line 11

4 Ongoing Work

We have completed application 1 in C, C++, and Ada. We are currently implementing
application 2. We made the decision to use Ada as our sole prototyping language for
the remaining applications to help speed up the effort. The final prototype will be
implemented in C++ as well as Ada. This will help us identify language specific issues
and it will also allow us to present the conceptual GNC FSW product line to the FSB in
two familiar languages.

Based on the length of each subsection within section 3 it is obvious that we have
made the most progress in analysis. However, even within analysis we have not ex-
plored behavioral models and their impact on variability. Our plan is to continue
working through the prototypes in an effort to mature our processes and their associ-
ated products. Once these have matured we will fully explore automating portions of
the process.

References

1. Software Productivity Consortium, Reuse-Driven Software Processes Guidebook,
SPC-92019-CMC version 02.00.03 November 1993.

2. Weiss, David M. and Chi Tau Robert Lai Software Product-Line Engineering: A
Family-Based Software Development Approach. Addison-Wesley, 1999

3. John Foreman. Product Line Based Software Development- Significant Results,
Future Challenges. Software Technology Conf., Salt Lake City, UT, 1996.

4. S. Gossain, D. Batory, H. Gomaa, M. Lubars, C. Pidgeon, and E. Seidewitz, Objects
anddomain engineering (panel), Proceedings of OOPSLA95, 1995.

5. Cohen, L. M. Northrop, Object-Oriented Technology and Domain Analysis, Fifth
International Conference of Software Reuse, June 1998.

6. B. Keepence, M. Mannion, Using Patterns to Model Variability in Product Families,
IEEE Software, July 1999, pp. 102-108.

7. Rumbaugh, James, Ivar Jacobson, Grady Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley, 1998.

8. Software Engineering Laboratory, Product line development approach for flight
software, SEL Study Brief, July 2000.

